
LOCAL INTERPOLATION AND INTERPOLATING BASES

A.P.GONCHAROV

Abstract. A Schauder basis was found in [5] for the space of Whitney functions
given on the Cantor-type set. Here we show that the system suggested corresponds
to local interpolations of functions. The same method gives a topological bases in the
spaces of continuous functions defined on compact sets of the Cantor type. Elements
of the basis locally are polynomials of any preassigned degree.

1. Introduction

Faber [3] found in 1910 the basis in the space C[0, 1] consisting of the primitives
of the Haar functions. In 1927 the more general form of the result was rediscovered
by Schauder [18], who considered not only the diadic system of points. The Faber-
Schauder system is interpolating, that is the n−th partial sum of the basis expansion
of a function f gives the values of f at the first n points from the sequence fixed
beforehand. In 1966 V.I. Gurarĭı [8] showed that for any dense sequence (xn) in a
metric compact setK there exists a basis in the space C(K) which is interpolating with
nodes (xn). V.D. Milman ([13], p.119) illustrated this approach by constructing a basis
from broken lines in the space of continuous functions defined on the classical Cantor
set. The review of up-to-date results on interpolating bases in spaces of continuous
functions can be found in [19], Ch.1.3. In particular, the Haar system is considered
there (Prop. 2.2.5) as the simplest topological basis in the space C(K) for the Cantor
set K. A diadic interpolating basis (Pn) for C[0, 1] with moderate growth of degrees
of the polynomials Pn was done in [1]. Grober and Bychkov showed in [7] that the
Schauder system is an interpolating basis in the space of Hölder type functions Cα[0, 1].
For interpolating Schauder bases in functional spaces on fractal sets see [10] and [11].
Nevertheless not all functional spaces possess interpolating bases ([9]).

Here we use local interpolations to construct a topological basis in the spaces of
continuous functions on Cantor-type sets. Elements of the basis locally are polyno-
mials of any degree given beforehand. The approach allows to find a basis in Banach
spaces of differentiable functions defined on rarefied sets (in preparation).

A polynomial basis (Pn) in a functional space is called a Faber basis if deg Pn = n
for all n. Due to the classical result of Faber [4], the space C[0, 1] does not possess a
such basis. It should be noted that due to Al.A. Privalov [17] for any ε > 0 in the
space C[0, 1] there exists a polynomial basis (Pn) with deg Pn ≤ (1 + ε)n.

On the other hand Obermaier found in [15] (see also [16]) a Faber interpolating basis
in the space C(K) for K = {0} ∪ (qn)∞n=0, 0 < q < 1. Contrary to the case of C∞−
functions, where the space E(K) has an interpolating Faber basis if the Cantor-type
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set is polar ([5]), here we cannot suggest a Faber basis even for very thin Cantor sets.
One may ask
Does there exist a perfect set K such that the space C(K) possesses a Faber basis?
More generally this is a problem of a geometric characterization of compact sets such
that the corresponding space of continuous functions has a Faber basis. The problem
is intimately related to the question of the order of growth of the sequence of the
Lebesgue constants for the corresponding compact set.

The choice of nodes is of principal importance in interpolation. For Cantor-type sets
we use the rule of increase of the type. Locally the points satisfy the Leja condition,
that is every next point furnishes the maximum modulus on the corresponding part
of the set for the polynomial defined by the previous points as its zeros. But the
sequence suggested is not a Leja sequence even for very thin Cantor sets ([6]).

2. Local Interpolation

Suppose for infinite compact sets K0, K1 we have K1 ⊂ K0 and K0 \K1 is closed.
Let natural numbers N0,M1, N1 be given with N0 ≥ 2, M1 ≤ N0,M1 ≤ N1. Let

for s ∈ {0, 1} we have a finite system of points (x
(s)
k )Ns

k=1 ⊂ Ks. Here we suppose

that x
(s)
k 6= x

(s)
l for k 6= l and (x

(0)
k )N0−M1

k=1 ⊂ K0 \ K1, x
(0)
N0−M1+r = x

(1)
r for r =

1, · · · ,M1. We adopt the conventions that
∑n

k=m(· · · ) = 0 and
∏n

k=m(· · · ) = 1 for

m > n. For s ∈ {0, 1}, 0 ≤ n ≤ Ns set ẽns(x) =
∏n

k=1(x − x(s)
k ), and let ens be the

restriction of ẽns to Ks, otherwise ens(x) = 0. Also for any function f defined on Ks

let ξns(f) = [x
(s)
1 , x

(s)
2 , · · · , x(s)

n+1]f, where x
(0)
N0+1 := x

(1)
M1+1 and x

(1)
N1+1 ∈ K1 is any point

differing from x
(1)
k , k = 1, · · · , N1. For the definition and the properties of the divided

differences, see e.g. [2].
Clearly, the system (ens, ξns)

Ns
n=0 is biorthogonal, that is ξns(ems) = δmn. As in [5]

we use the functionals

ηn, 1 = ξn, 1 −
N0∑
k=n

ξn, 1(ek0) ξk0.

Only the values n = M1 + 1, · · · , N1 will be important for us in the sequel, but the
following property is valid for any n:

ηn, 1(f) = 0 for any f ∈ ΠN0(K0). (1)

Here and in what follows by ΠN(A) we denote the set of functions coinciding on the
set A with some polynomial of degree not greater than N, ΠN := ΠN(R). To prove

(1) for n ≤ N0 we can use the expansion f =
∑N0

j=0 ξj, 0(f)ej, 0 of f with respect to the

basis (ej, 0)N0
j=0 of ΠN0 . If n > N0, then ηn, 1 = ξn, 1 contains Πn−1 in its kernel.

Given f on K0 let us denote by Qn(f, (xk)
n+1
k=1 , ·) (also by Qn(·)) the Newton inter-

polation polynomial of degree n for f with nodes at x1, · · · , xn+1.

Let us consider the function Sn(f, x) = Qn(f, (x
(0)
k )n+1

k=1 , x) for n = 0, · · · , N0 and

SN0+r(f, x) = QN0(f, (x
(0)
k )N0+1

k=1 , x) +

M1+r∑
k=M1+1

ηk, 1(f)ek, 1(x) (2)
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for r = 1, · · · , N1 − M1. We see at once that SN0+r ∈ ΠN0(K0 \ K1) and SN0+r ∈
Πmax{N0,M1+r}(K1).

Lemma 1. Given function f defined on K0 and n = 0, 1, · · · , N0 + N1 − M1, the
function Sn(f, ·) interpolates f at the first n+ 1 points from the set

{x(0)
1 , · · · , x(0)

N0
, x

(1)
M1+1, · · · , x

(1)
N1+1}.

Proof : The result is obvious for n ≤ N0. Let n = N0 + r with r = 1, · · · , N1 −
M1. The polynomial QN0 interpolates f at the points x

(0)
1 , · · · , x(0)

N0
, x

(1)
M1+1. For k ≥

M1 + 1 the functions ek, 1 take zero value at these points. Therefore, SN0+r(f, x
(0)
j ) =

f(x
(0)
j ), j = 1, · · · , N0 + 1 and we need to check only the condition

SN0+r(f, x
(1)
m ) = f(x(1)

m ), m = M1 + 2, · · · ,M1 + r + 1.

Since SN0+r(f, ·) is defined just by the values of f at the points x
(0)
1 , · · · ,

x
(1)
M1+r+1, there will be no changes if we replace f by the polynomial

QN0+r = QN0(f, (x
(0)
k )N0+1

k=1 , ·) +

M1+r∑
j=M1+1

βj(f) Ωj(·),

where βj(f) = [x
(0)
1 , · · · , x(0)

N0
, x

(1)
M1+1, · · · , x

(1)
j+1]f, Ωj(x) = ẽN0−M1, 0(x) ẽj, 1(x).

Substituting this in (2) we get QN0(QN0+r) = QN0 and also ηk, 1(QN0) = 0, by (1).

The function Ωj takes zero value at all points x
(0)
k , k = 0, · · · , N0 + 1 that define the

divided differences ξk, 0. Hence, ξk, 0(Ωj) = 0 and ηk, 1(Ωj) = ξk, 1(Ωj). It follows that

M1+r∑
k=M1+1

ηk, 1(QN0+r) ek, 1(x) =

M1+r∑
j=M1+1

βj(f)

M1+r∑
k=M1+1

ξk, 1(Ωj) ek, 1(x).

At the point x = x
(1)
m the last sum equals

∑m−1
k=j ξk, 1(Ωj) ek, 1(x

(1)
m ). The terms with

k < j disappear, since the points x
(1)
1 , · · · , x(1)

k+1 are zeros of Ωj for j > k. Also

ek, 1(x
(1)
m ) = 0 if k ≥ m. Including all these zero terms we get the sum

∑degΩj

k=0 ξk, 1(Ωj) ek, 1(x
(1)
m )

which is the value of the interpolation polynomial for the function Ωj at the point x
(1)
m

that is Ωj(x
(1)
m ).

Therefore,

SN0+r(f, x
(1)
m ) = QN0(x

(1)
m ) +

M1+r∑
j=M1+1

βj(f) Ωj(x
(1)
m ) = QN0+r(x

(1)
m ).

But the polynomialQN0+r interpolates the function f at the point x
(1)
m . Thus, SN0+r(f, x

(1)
m ) =

f(x
(1)
m ). 2

The point of the lemma is that it allows one to interpolate functions locally. Suppose
we have a chain of compact sets K0 ⊃ K1 ⊃ · · · ⊃ Ks ⊃ · · · and finite systems of

distinct points (x
(s)
k )Ns

k=1 ⊂ Ks for s = 0, 1, · · · . Some part of the knots on Ks+1−
let (x

(s+1)
k )

Ms+1

k=1 − belongs to the previous set (x
(s)
k )Ns

k=1. We will interpolate a given
function f on Ks up to the degree Ns and then restrict the interpolation to the set
Ks+1, where the degree of interpolation will be Ns+1, etc. As the diameters of Ks
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decrease, the approximation properties of the interpolating polynomials will improve.
Since the points of interpolation are chosen independently on functions, the approach
allows us to construct topological bases in spaces of functions defined on rarefied sets.

3. Estimations for fundamental Lagrange polynomials

Given function f on a compact set K ⊂ R, let ω(f, ·) be the modulus of continuity
of f , that is ω(f, t) = sup{ | f(x) − f(y) | : x, y ∈ K, |x − y| ≤ t}, t > 0. For N ≥ 1
and distinct points x1, · · · , xN+1 ∈ K with x1 < x2 < · · · < xN+1 let eN+1(x) =∏N+1

k=1 (x − xk), ξN(f) = [x1, x2, · · · , xN+1]f and t = maxk≤N |xk+1 − xk|. Then from
the representation

ξN(f) =
N+1∑
k=1

f(xk)

e′N+1(xk)
=

N∑
k=1

[f(xk)− f(xk+1)] ·
k∑
j=1

1

e′N+1(xj)

we easily get

| ξN(f) | ≤ N2 ω(f, t) (mink≤N | e′N+1(xk)| )−1. (3)

All our subsequent considerations are related to Cantor-type sets. Let Λ = (ls)
∞
s=0

be a sequence such that l0 = 1 and 0 < 2ls+1 ≤ ls for s ∈ N0 := {0, 1, · · · }. Let
K(Λ) be the Cantor set associated with the sequence Λ that is K(Λ) =

⋂∞
s=0Es, where

E0 = I1,0 = [0, 1], Es is a union of 2s closed basic intervals Ij, s of length ls and Es+1

is obtained by deleting the open concentric subinterval of length hs := ls− 2ls+1 from
each Ij, s , j = 1, 2, ...2s. We will consider Cantor-type sets with the restriction only
that

∃A : ls ≤ A · hs, ∀s. (4)

Without loss of generality we suppose A ≥ 2.
Let x be an endpoint of some basic interval. Then there exists the minimal number

s (the type of x) such that x is the endpoint of some Ij,m for every m ≥ s.
By Ks we denote K(Λ) ∩ [0, ls]. Given Ks with s ∈ N0, let us choose the sequence

(xn)∞1 by including all endpoints of basic intervals, using the rule of increase of the
type. For the points of the same type we first take the endpoints of the largest gaps
between the points of this type; here the intervals (−∞, x), (x,∞) are considered as
gaps. From points adjacent to the equal gaps, we choose the left one x and then ls−x.
Thus, x1 = 0, x2 = ls, x3 = ls+1, · · · , x7 = ls+1 − ls+2, · · · , x2k+1 = ls+k, · · · (see [6] for
more details).

Set

µs,N :=
maxx∈Ks| eN(x)|
minj≤N | e′N+1(xj)|

, LN, j(x) =
N∏

k=1, k 6=j

x− xj
xk − xj

,

that is LN, j denotes the fundamental Lagrange polynomial.

Lemma 2. Suppose the Cantor-type set K(Λ) satisfies (4) and for N ≥ 1 the points
(xk)

N+1
1 ⊂ Ks are chosen by the rule of increase of the type. Then

µs,N ≤ AN and maxj≤N, x∈Ks|LN, j(x)| ≤ AN−1.
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Proof : For N = 1 the bounds are trivial. Let N = 2n + ν with 0 ≤ ν < 2n. Then
(xk)

N+1
1 consists of all endpoints of basic intervals of the type s + n − 1 and ν + 1

points of the type s+ n. Fix any x ∈ Ks and xj, j ≤ N + 1.
By (yk)

N
1 we denote the points (xk)

N
1 arranged in the order of increase of distances

|x − xk|, that is |x − yk| = |x − xσk | ↑ . Then Y = (yk)
N
1 = ∪nm=0Ys+m where

Yq = {yk : hq ≤ |x− yk| ≤ lq}, q = s+n−1, · · · , s and Ys+n = {yk : |x− yk| ≤ ls+n}.
Similarly, Z = (zk)

N
1 consists of the points xk, 1 ≤ k ≤ N + 1, k 6= j but here

|xj − zk| = |xj − xτk | ↑ . As before, Z = ∪nm=0Zs+m with Zs+n = {zk : |xj − zk| =
ls+n}, Zq = {zk : hq ≤ |xj−zk| ≤ lq} for q = s+n−1, · · · , s. Let aq = |Yq |, bq = |Zq |
be the cardinalities of the corresponding sets. Since the points (xk)

N+1
1 are uniformly

distributed on Ks, it follows that the numbers of points xk in two basic intervals
Ii, q, Ij, q of equal length are the same or differ by 1 (see [6] for details). But the point
xj is not included into the computation of bq. Hence we have for q = s+ n, · · · , s the
following inequality

as+n + · · ·+ aq ≥ bs+n + · · ·+ bq. (5)

Next, | eN(x) | =
∏N

k=1 |x− yk| ≤ l
as+n

s+n · · · lass , | e′N+1(xj)| =
∏N

k=1 |xj − zk| ≥ l
bs+n

s+n ·
h
bs+n−1

s+n−1 · · ·hbss and

| eN(x)|
| e′N+1(xk)|

≤
s+n∏
k=s

lak−bkk

s+n−1∏
k=s

(lk/hk)
bk . (6)

Let us show that the first product in (6) does not exceed 1. Since as+n ≥ bs+n
and ls+n < ls+n−1, we get

∏s+n
k=s+n−1 l ak−bkk ≤ l

as+n+as+n−1−bs+n−bs+n−1

s+n−1 . From (5) we see
that the new degree of ls+n−1 is not negative. Therefore,

s+n∏
k=s+n−2

l ak−bkk ≤ l
∑s+n

s+n−2 (ak−bk)

s+n−2 .

We continue in this fashion eventually obtaining l
∑s+n

s (ak−bk)
s = 1, as

∑s+n
s ak =∑s+n

s bk = N.

The second product on the right in (6) can be estimated from above by A
∑s+n

s bk =
AN . The points x and xj were chosen in arbitrary way; thus we get the first desired
inequality.

The polynomials LN, j can be handled in the same way; the only difference is that
now (yk)

N−1
1 and (zk)

N−1
1 are the points (xk)

N
k=1, k 6=j properly rearranged. 2

Example 1. Let K(Λ) be the classical Cantor set. For any s the sequences (µs,N)N
and (maxj≤N, x∈Ks|LN, j(x)|)N have exponential growth.

Proof : Without loss of generality we can take s = 0. Let us define the Cantor
sequence (ck)

∞
1 as 0, 1, 2, 3, 6, 7, 8, 9, 18, · · · . Here for q = 1, 2, · · · and m = 1, · · · , 2q

we get c2q+m = 2 · 3q−1 + cm. Fix N = 2n − 1. The polynomial eN+1 has as its zeros
all endpoints of the type ≤ n − 1, that is the points (3−n+1ck)

2n

k=1. In the same way
as in [6] we take d1 = 0, d2 = ln−1, d3 = ln−2 − ln−1, · · · , dk = ln+1−k − dk−1, so
dk = ln+1−k − ln+2−k + · · ·+ (−1)k ln−1.
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For the point xN = 1/3− 1/9 + · · ·+ (−1)n 3−n+1 we have

| e′N+1(xN)| =
n−1∏
k=0

2k+1∏
j=2k+1

(3−n+1 cj − dk+1).

On the other hand, | eN(ln)| = | eN+1(ln)| · |xN+1 − ln|−1 ≥ | eN+1(ln)| with xN+1 =

1− xN . Here | eN+1(ln)| = ln
∏n−1

k=0

∏2k+1

j=2k+1(3−n+1 cj − ln). Therefore,

µ 0, N ≥ ln
ln−1 − ln
ln−1

2ln−1 − ln
ln−1

ln−2 − ln
2ln−1

n−1∏
k=2

2k+1∏
j=2k+1

3−n+1 cj − ln
3−n+1 cj − dk+1

.

For k ≥ 2 we get dk+1 >
2
9
ln−k−1, as is easy to check. If 2k + 1 ≤ j ≤ 2k+1, then

cj ≤ 3k and 3−n+1 cj ≤ ln−k−1. Therefore all terms in the product
∏

j exceed 6/5.
Thus,

µ 0, N ≥ ln ·
40

27
·
(

6

5

)2n−4

> ln ·
(

6

5

)2n−2

=
25

36
exp [(N + 1) · ln6

5
− ln3

ln2
· ln(N + 1)].

The same arguments are valid for the lower bound of |LN,N(ln)|. 2

The values of the fundamental Lagrange polynomials do not exceed 1 if the nodes
of interpolation are chosen as Fekete points. In our case the system of nodes of
interpolation is monotone, that is we choose the point xN+1 for the points (xk)

N
1

already fixed. Thus, (xk)
∞
1 is a kind of Leja sequence.

For more rarefied Cantor type sets the bounds of Lemma 2 can be considerably
improved. Let us consider for example the set K(α), that is the Cantor set associated
with the sequence 1, l1, l

α
1 , · · · , lα

s

1 , · · · . Here α > 1 and without loss of generality let
6l1 ≤ 1.

Example 2. If Ns l
α−1
s ≤ 1, then for 1 ≤ N ≤ Ns we get µs,N ≤ e3 and

maxj≤N, x∈Ks|LN, j(x)| ≤ e3.
Proof : In this case the sequence ls/hs decreases, therefore the second product in (6)

does not exceed (ls/hs)
Ns . Here 1− 2lα−1

s ≥ Ns−2
Ns

. Hence, (ls/hs)
Ns ≤ ( Ns

Ns−2
)Ns < e3 if

Ns ≥ 6. If Ns ≤ 5, then (ls/hs)
Ns ≤ h−5

0 ≤ (3/2)5, which is also smaller than e3. 2
Remark. By Lemma 1 in [6], the condition Ns l

α−1
s ≤ 1 implies that the first Ns

Leja points are uniformly distributed on the set K(α) ∩ [0, ls].

4. Interpolating bases

Fix s ∈ N. Let natural numbers ns−1, ns be given with ns−1 ≤ ns. Set Ns = 2ns

and Ns−1 = 2ns−1 . Given N with 1 ≤ N ≤ Ns−1 we choose the points (x
(s−1)
k )

Ns−1+1
k=1

on Ks−1 and (xk)
N
k=1 on Ks by the rule of increase of the type. As above, ξk, s−1(f) =

[x
(s−1)
1 , · · · , x(s−1)

k+1 ]f, ek, s−1(x) =
∏k

j=1(x− x(s−1)
j )|Ks−1 for k = 1, 2, · · · , Ns−1. Also let

eN(y) =
∏N

j=1(y − xj)|Ks

Lemma 3. For fixed f ∈ C(K(Λ)), x ∈ Ks let ξ̃(f) = [x1, · · · , xN , x]f,

η̃(f) = ξ̃(f)−
∑Ns−1

k=N ξ̃(ek, s−1)ξk, s−1(f). Then

| η̃(f) eN(x) | ≤ N4
s−1A

2Ns−1 ω(f, ls−1).
6



In the case K(Λ) = K(α) we have | η̃(f) eN(x) | ≤ e6N4
s−1 ω(f, ls−1), provided the

condition Ns l
α−1
s ≤ 1.

Proof : By ẽ we denote the function ẽ(y) = (y − x) eN(y). Then by (3) | ξ̃(f) | ≤
N2 ω(f, ls) (minj≤N | ẽ ′(xj)| )−1. Since eN(x)/ẽ ′(xj) = −LN, j(x), Lemma 2 now im-
plies

| ξ̃(f) eN(x) | ≤ N2AN−1 ω(f, ls). (7)

The representation ξ̃(ek, s−1) = ek, s−1(x)/eN(x) +
∑N

j=1 ek, s−1(xj)/ẽ
′(xj) gives

| ξ̃(ek, s−1) ξk, s−1(f) eN(x) | ≤

| ξk, s−1(f) ek, s−1(x) |+
N∑
j=1

| ek, s−1(xj) |
| ẽ ′(xj) |

· | eN(x) |
mini≤k| e′k+1, s−1(xi)|

k2 ω(f, ls−1).

The first term on the right does not exceed k2Ak ω(f, ls−1), by (3) and Lemma
2. The parts of the two fractions in the second sum will be considered cross-wise.
Applying Lemma 2 twice we get

| ξ̃(ek, s−1) ξk, s−1(f) eN(x) | ≤ (1 +N AN−1) k2Ak ω(f, ls−1).

Clearly,
∑n

1 k
2Ak ≤ 5/8 An n3 for n ≥ 2. Summing over k and taking into account

(7), we get the general estimation of | η̃(f) eN(x) |.
In the same manner we obtain the desired bound in the case K(Λ) = K(α). 2
The task is now to show that the biorthogonal system suggested in [5] as a basis for

the space E(K(Λ)) forms a topological basis in the space C(K(Λ)) as well, provided
a suitable choice of degrees of polynomials.

Given a nondecreasing sequence of natural numbers (ns)
∞
0 , let Ns = 2ns , M

(l)
s =

Ns−1/2 + 1, M
(r)
s = Ns−1/2 for s ≥ 1 and M0 = 1. Here, (l) and (r) mean left and

right respectively. For any basic interval Ij,s = [aj,s, bj,s] we choose the sequence of
points (xn,j, s)

∞
n=1 using the rule of increase of the type.

As in [5] we take eN,1, 0 = ΠN
n=1(x − xn,1, 0) = ΠN

1 (x − xn) for x ∈ K(Λ), N =
0, 1, · · · , N0. For s ≥ 1, j ≤ 2s let eN,j, s = ΠN

n=1(x − xn,j, s) if x ∈ K(Λ) ∩ Ij,s, and

eN,j, s = 0 on K(Λ) otherwise. Here, N = M
(a)
s ,M

(a)
s + 1, · · · , Ns with a = l for odd

j and a = r if j is even. The functionals are given as follows: for s = 0, 1, · · · ; j =
1, 2, · · · , 2s and N = 0, 1, · · · , let ξN,j, s(f) = [x1,j, s, · · · , xN+1,j, s]f. Set ηN,1, 0 = ξN,1, 0
for N ≤ N0. Every basic interval Ij,s, s ≥ 1, is a subinterval of a certain Ii,s−1 with
j = 2i− 1 or j = 2i. Let

ηN,j, s(f) = ξN,j, s(f)−
Ns−1∑
k=N

ξN,j, s(ek, i, s−1) ξk, i, s−1(f)

for N = M
(a)
s ,M

(a)
s + 1, · · · , Ns. As before, a = l if j = 2i− 1, and a = r if j = 2i.

The important difference from the previous case given in [5] is that the space
E(K(Λ)) is nuclear, therefore, by the Dynin-Mityagin theorem, any topological ba-
sis there is absolute. On the other hand in the case of the Banach spaces C(K(Λ))
any topological basis is not even unconditional. By [12] the space C[0, 1] has no
unconditional basis. But by Miliutin [14] all spaces C(K) are isomorphic between
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themselves for compact sets of cardinality of the continuum. Thus we have to enu-
merate the elements (eN, j, s)

∞, 2s, Ns

s=0, j=1, N=Ms
in a reasonable way. We arrange them by

increasing the level s. Elements of the same level are ordered by increasing the
degree, that is with respect to N . For fixed s and N the elements eN, j, s are or-
dered by increasing j, that is from left to right. In this way we introduce a in-
jective function σ : (N, j, s) 7→ M ∈ N. At the beginning we have for zero level:
σ(0, 1, 0) = 1, · · · , σ(N0, 1, 0) = N0 + 1. Since the degree of the first element on
I1,1 is greater that on I2,1, we start the first level from eN0/2, 2, 1 : σ(N0/2, 2, 1) =
N0 + 2, σ(N0/2 + 1, 1, 1) = N0 + 3, σ(N0/2 + 1, 2, 1) = N0 + 4, · · · , σ(N1, 2, 1) =
N0 + 1 + 2(N1 − N0/2) + 1 = 2(N1 + 1) and we finish all elements of the first level.
For s = 2 we have two elements eN1/2, 2, 2, eN1/2, 4, 2 of the smaller degree, so they
have a priority: σ(N1/2, 2, 2) = 2(N1 + 1) + 1, σ(N1/2, 4, 2) = 2(N1 + 1) + 2. Then
σ(N1/2+1, 1, 2) = 2(N1 +1)+3, σ(N1/2+1, 2, 2) = 2(N1 +1)+4, · · · , σ(N2, 4, 2) =
2(N1 +1)+4(N2−N1/2)+2 = 4(N2 +1). Continuing in this manner after completing
of the s−th level we get the value σ(Ns , 2s, s) = 2s(Ns + 1).

By injectivity of the function σ there exists the inverse function σ−1. Let fm =
eσ−1(m), m ∈ N.

Theorem 1. Let a Cantor-type set K(Λ) satisfy (4). Then for any bounded sequence
(Ns)

∞
0 the system (fm)∞1 forms a Schauder basis in the space C(K(Λ)).

Proof : Given f ∈ C(K(Λ)) by SM(f, ·) we denote the M−th partial sum of the ex-
pansion of f with respect to the system (fm)∞1 , that is SM(f, x) =

∑
ηN,j, s(f) eN,j, s(x),

where the sum is taken over all N, j, s with σ(N, j, s) ≤ M. If 1 ≤ M ≤ N0 + 1,
then SM(f, x) = QM−1(f, (xn,1, 0)Mn=1, x). The next function SN0+2 is not a polyno-
mial on I1, 0. The restriction of SN0+2 to the interval I1,1 is QN0 , whereas SN0+2|I2,1 =
QN0 + ηN0/2,2, 1(f) eN0/2,2, 1. In both cases we get the polynomials of degree N0 that
interpolate f at N0/2 + 1 points each. And always the subscript M gives the total
number of points where SM interpolates f.

Continuing in this way we see that the restriction of the function S2p(Np+1) to any in-

terval Ij, p , j = 1, · · · , 2p, coincides with QNp(f, (xn,j, p)
Np+1
n=1 , ·). Adding the next terms

η(f) e to S2p(Np+1) we get on the intervals Ij, p+1 , j = 1, · · · , 2p+1 certain polynomi-
als of degree Np that interpolate f at some points. Increasing M we get S2p+1Np+1

that has a degree Np on I1, p+1 and interpolates f on this interval at Np + 1 points;
so here it is the usual interpolating polynomial. Adding the next 2p+1 − 1 terms to
the sum S2p+1Np+1 we get S2p+1(Np+1). The restriction of this function to any inter-

val Ij, p+1, j = 1, · · · , 2p+1 gives QNp(f, (xn,j, p+1)
Np+1
n=1 , ·) and S2p+1(N+1)|Ij, p+1

produces

QN(f, (xn,j, p+1)N+1
n=1 , x) for N ≥ Np. It will continue up to the value N = Np+1, after

which we do the next splitting.
Suppose ηN,j, s(f) = 0 for all N, j, s. Then, by considering step by step all triples

σ−1(m), m ∈ N, we get ξN,j, s(f) = 0 for all N, j, s. The set of nodes of the corre-
sponding divided differences is dense in K(Λ). Therefore, f = 0 and the expansion
f =

∑
ηN,j, s(f) eN,j, s(x) is unique. We need to check only the convergence of SM(f, ·)

to f in the norm of the space C(K(Λ)).
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Let Ns ≤ B for s ∈ N0. Fix f ∈ C(K(Λ)), ε > 0 and sε such that ω(f, lsε) ≤
B−4A−2B ε. Let Mε = 2sε(Nsε + 1). For any M ≥ Mε we get 2s−1(Ns−1 + 1) ≤ M <
2s(Ns + 1) with s ≥ sε + 1.

Fix x ∈ K(Λ). Without loss of generality let x ∈ K(Λ) ∩ [0, ls].
If 2s−1(Ns−1 + 1) ≤M ≤ 2sNs−1, then

SM(f, x) = QNs−1(f, (xn,1, s−1)
Ns−1+1
n=1 , x) +

∑
ηN,1, s(f) eN,1, s(x), (8)

where the sum is taken over all N, j, s with 2s−1(Ns−1 + 1) < σ(N, j, s) ≤ M. The
degree Ns−1 will appear for the first time when σ−1(2sNs−1 + 1) = (Ns−1, 1, s). Thus
for the values N in (8) we have N ≤ Ns−1 − 1.

For the second case 2sNs−1 + 1 ≤M < 2s(Ns + 1) we get

SM(f, x) = QN(f, (xn,1, s)
N+1
n=1 , x)

with some N, Ns−1 ≤ N ≤ Ns.
Let us consider at the beginning the simpler second case. With the notation ξ̃(f) =

[x1,1, s, · · · , xN+1,1, s, x]f, we have the polynomial Q̃N+1(·) = QN(·) + ξ̃(f) eN+1,1, s(·)
that interpolates f also at the point x. Therefore here f(x)−SM(f, x) = ξ̃(f) eN+1,1, s(x)
and as in (7)

| ξ̃(f) eN+1(x) | ≤ (N + 1)2AN ω(f, ls) ≤ (B + 1)2AB ω(f, ls),

which does not exceed ε.
For the case 2s−1(Ns−1 + 1) ≤ M ≤ 2sNs−1, we denote the last term of the sum

in (8) by ηR,1, s(f) eR,1, s(x). As it was remarked before, R ≤ Ns−1 − 1. We can use

Lemma 3 with N = R + 1. Here ξ̃(f) = [x1,1, s, · · · , xR+1,1, s, x]f and η̃(f) = ξ̃(f) −∑Ns−1

k=R+1 ξ̃(ek,1, s−1)ξk,1, s−1(f). Then by Lemma 1 the function SM(f, ·)+η̃(f) eR+1,1, s(·)
interpolates f at the point x. Therefore, | f(x) − SM(f, x) | = | η̃(f) eR+1,1, s(x) | ≤ ε
by Lemma 3 and because of the choice of sε. Therefore, | f(x)−SM(f, x) | ≤ ε for any
M ≥Mε, which is the desired conclusion.
2

In the case K = K(α) one can choose an unbounded sequence (Ns) such that
the series

∑
ηN,j, s(·) eN,j, s will approximate functions from the Hölder class (that is

functions with ω(f, t) ≤ C t δ for some C and δ) in the norm of C(K). For example,

the condition Ns l
min{δ/4, α−1}
s → 0, as s → ∞ provides both the convergence of the

series to f and the applicability of Lemma 3.
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